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STRESS RELAXATION? 

The stress relaxation process is linked to the change with time of the metric stress tensor of the medium. 

Possible types of thermodynamically justified relaxation equations are discussed. 

1. THE EQUATIONS OF THE THEORY OF ELASTICITY 

AN ELASTIC medium is a special case of a simple medium, i.e. of a medium whose state can be 
described by three functions xi(c, t) of the law of motion and one thermodynamic function 
represented here by the entropy density per unit mass S(Y, t). 

We will adopt the notation used in [l]: xi are the coordinates in a three-dimensional Euclidean 
observer space and 5” in Lagrangian space, letters i, j, k, . . . from the middle of the Latin alphabet 
denote the projections of the tensors on the basis vectors of Eulerian space, the letters (I, b, c, d, . . . 
from the beginning of the Latin alphabet denote the projections on the basis vectors of Lagrangian 
space, xOi = a#($‘, t)lag”, &” = aci”(Xi,t)l&r is the direct and reverse distortion, gii, gij = ]]g&’ are 
the covariant and contravariant components of the metric tensor in Euclidean observer space, the 
Eulerial indices i, j k, . . . are juggled using the metric gii, repeated upper and lower indices denote 
summation, the indices u, b, c, d, . . . are juggled using the metric tensor of the medium in the 
Lagrangian system of coordinates gab = x,‘xbg$, gab = cia$bgii 
state are denoted by a zero superscript gObo, x, ‘, p”, so, . 

and the quantities referring to initial 
. . ; dldt = alat + Vialax’ is the tensor time 

derivative for constant Lagrangian coordinates, vi = dxi(r, t)ldt are the components of the velocity 
vector, pi, pab = ef[pp’j, pba = paC& are the COmpOnentS of the Cauchy StreSS tensor projected on 
different bases, U is the internal energy density of the medium per unit mass, T is the absolute 
temperature, qi, qa = q’s: are the components of the thermal flux vector, and Vi, Vi = &‘Vj = V,gv 
and V, = XiVi = ViXi, V” = gabVb = Vbgb are the operators of covariant differentiation over the 
metric of the Eulerian and Lagrangian space, respectively. 

The system of equations of the mechanics of simple media consists of the equations of momenta 
energy and entropy balance 

dui 
P-r 

= v,p + g 
dU 

p,, 
= pvjoi - Viq” + r 

(l-1) 
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Here f is the density of external volume forces, r is the external volume heat source, p is the 
density of the medium given exphcitiy by the law of motion and density of the initial state by the 
formula 

P = P” (P) V?V?VVzK% 

$ = de% ]] &$ ]]t B = dot i] gab II 
(I.21 

4’ is the uncompensated heat and o is the increase in entropy, which by virtue of the second law of 
thermodynamics must be non-negative. 

In order to close the system of equations (1.1) we must specify the equations of state, which 
express the quantities U,pii, qi and q’ in terms of four basic unknown functions x’(p, t) and S(q, t). 

In the theory of elasticity the equations of state are defined if the dependence of internal energy 
density ZJ on the components of metric tensor of the medium g,, and entropy S is known 

u = u (&,a, s), pab = 2P~u/d&,, T = aU/ds (1.3) 

q’ = 0 0.4) 

The Fourier law of heat conduction 

Qi -_ _&r.T J (1.5) 

where x is the symmetrical thermal conductivity tensor, can be used as the relation for the thermal 
flux vector q. 

The system of equations (1. l), taking (1.2)-(1.4) into account, consists of five relations for four 
unknown functions x’(s”, t) and S(c, t). The system is, however, not overdefined, since the 
equations of energy and entropy balance [the last two equations of (1. l)] are interdependent by 
virtue of the equations of state (1.3) and (1.4). Subtracting the third equation of (1 .l) from the 
second equation of (1.1) multiplied by T, we find that 

dUldt = pmlpijVjUi + TdSldt - q’ (1.6) 

We can confirm the validity of identity (1.6) by direct substitution of Eqs (1.3) and (1.4), and we 
make use here of the kinematic identity [l] 

d&,/dt = Cal+, + ‘c7bV, = xa$,j (ViVj + v&) 

Relation (1.6) represents one of the expressions for the basic thermodynamic Gibbs identity. The 
interdependence of Eqs (1.1) and the existence of their resulting identity represent, by virtue of the 
equations of state, together with the condition that the increase in entropy a is non-negative, the 
laws restricting the possible form of the equations of state. 

When the medium is made more complex by adding new functions defining its state, then every 
freshly introduced characteristic requires that an equation be constructed for it. The additional 
equations together with system (1.1) and the equations of state, must again admit of the existence of 
an identity corollary and ensure the non-negativity of the production of entropy U. 

2. THE RELAXATION EQUATIONS IN AN ISOTROPIC MEDIUM 

The scalar form of the function U(gab, S) implies the existence, amonst its arguments, of 
additional tensor quantities [2]. In the isotropic case, such additional tensor arguments can be 
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represented by the components of the metric tensor (MT) of the standard, stress-free state (SSS), 
realized at some fixed standard value of the entropy S, . The components of the MT SSS will be 

henceforth denoted by qab (the covariant components) and qab = ]IQ,]I-~ (the contravariant 
components), and the values of all the remaining quantities in the SSS will be marked with an 
asterisk. 

In the theory of elasticity the SSS is usually identical with the initial State, r)& = gob0 = xao'xbo'&, 
and 

dq,,ldt = 0 (2.1) 

Moreover, n&#&b’ and the medium in question becomes more complicated by virtue of 
allowing a change with time of the components of the MT SSS r)&,(ca, t) which, together with the 
functions x’(c, t) and S(p, t), become the parameters describing the state of the medium. The 
equations describing the change of MT qab with time will be called the relaxation equations. We 
shall now take, as the deformation of the medium, the difference between the MT g,b of the actual 
state of the medium and the MT Tab of the SSS. This deformation is often called, in the literature, 
the elastic strain so as to distinguish it from the plastic deformation with which the difference 
between the MT qab and the MT of the medium in its initial state gob0 is associated. We shall call 
here the difference between gab and gab0 the total deformation. From the physical point of view, it 
will perhaps be more natural to regard as the deformation the difference between the actual state of 
the medium and the SSS, i.e. the difference between gab and q&,, and regard the difference between 
Tab and gob0 as the evolution of the internal state of the medium. When such terminology is used, the 
stress relaxation process will be accompanied by a change in the deformations, although no external 
motion of the medium may be apparent. Therefore the terms “relaxation of stresses” and 
“relaxation of deformations” refer to the same single process. 

We can adopt, without loss of generality, the relaxation equations in the form 

drlaald = ,2qdc%b (2.2) 

where the components of the relaxation tensor cp must be specified as functions of the defining 
parameters. 

Note that the spherical part of the tensor cp is responsible for the change in the density of the SSS. 
Indeed, 

It is clear that the deviator part of the tensor Q will be responsible for the relaxation of the shear 
deformation [strain] and shear stresses. 

In order to avoid any misunderstandings we should note here that the functions x,j(E;a, t) 
determining the law of change of the SSS for which nob = x*aix*bjgij, may be non-existent if the 
functions r)&(c, t) do not make the corresponding curvature tensor equal to zero [2]. This means 
that the medium will not be able, in this case, to shed all stresses in a purely elastic manner while 
remaining in three-dimensional space, i.e. the SSS cannot be realized in three-dimensional observer 
space. This, however, is not important in what follows, since the basic variables, i.e. the MT of SSS 
nab are well-defined fUnCtiOUS. 

When the time is shorter than the characteristic relaxation time, i.e. at times during which Eq. 
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(2.2) has no chance to develop and is practically identical with Eq. (2.1), the medium behaves as an 
ordinary elastic body, and for this reason we must retain, for a medium with relaxation, the form of 
the internal energy density function U(gab, qahr S) and the equations of state (1.3) of the theory of 
elasticity. Then identity (1.6) will yield, by virtue of the equations of state, the following expression 
for the amount of heat generated during the relaxation process: 

qf = -(dU/dQJ &&dt = p-‘pgq)ab 

Here we make use of the identity 

(@uJ#gac) gcb + (aulmac) tl~b = 0 

the first relation of (1.3) and Eq. (2.2). 

(2.3) 

(2.4) 

Identity (2.4) follows from the condition that the function U is scalar: 

u&b, ttab, s) = u kd&"@%t tl,d%&bd, s) (2*5) 

where aba is the matrix of an arbitrary change of coordinates. In order to obtain (2.4) we must differentiate Eq. 
(2.5) in abn and write abn = Sba, where Sba is the Kronecker delta. 

In order to close the system of equations (l.l)-(1.3), (2.2), (2.3), it remains to specify the 
expressions for the heat flux vector q and the relaxation tensor cp, satisfying the requirement that the 
gain in entropy 

must be positive. 

(J= ---* (v,T) 4’ + r-‘pbatpGb (2.6) 

The structure of expression (2.6) implies that the tensor Q plays the role of the thermodynamic 
flux of the relaxation process, while the stress tensor p plays the role of the thermodynamic force. In 
accordance with general principles of the mechanics of irreversible processes, the thermodynamic 
fluxes can be naturally expressed in terms of the thermodynamic forces. 

3. AN EXPRESSION FOR THE RELAXATION TENSOR IN TERMS OF THE STRESS 

TENSOR 

We shall first assume that no thermodynamic interaction exists between the heat and relaxation 
processes. We can then adopt for the vector q the Fourier heat conduction law (1 S) (in the isotropic 
case xii = xg” and the tensor cp will be expressed in terms of tensor p only). 

We can assume, to a first approximation, the linear dependence between cp and p, which can 
always be written, in the case of an isotropic medium, in the form 

qpba = ,t&-’ fj&,” - 1/$,“&=] + ‘$‘-l [l/$,“l &ba (3.1) 

when ‘s and Q, are the characteristic relaxation times of the shear and volume deformations 
respectively (more accurately, the quantities ‘s and 7v correspond to characteristic times but are not 
equal to them, if only because they are of different dimensions). Also, 

4‘ = (pzt)‘” Pl*p,“l~ + 
+ (P%Y [Pa6 - ‘/~~,e6,bf tPb” - ‘i$c” &J’] (3.2) 

The non-negativity of this expression is ensured by the positive form of the quantities TS and TV. 
We can introduce non-linearity into formula (3.1) with the help of the dependence of the 

quantities TV and T” on the invariants of the tensor and scalar functions related to the state of the 
medium. This dependence can, in general, be arbitrary, and has to be found ex~rimentally. 
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The arbitrary dependence of Q on p satisfying the demand that q’ be positive can always be 
written, in the isotropic case, in the form 

‘Pab = A 9,” + AaFacPcdPcib (3.3) 

where Al and A2 are positive invariants of the stress tensor p and of the other scalar parameters of 
the medium. Here we also have 

4* = P-l [4P,bP*a + &PacPcbPadPdal (3.4) 

4. AN EXPRESSION FOR THE RELAXATION TENSOR IN TERMS OF MT OF THE SSS 

Since the stress tensor is expressed in terms of the tensor q, it follows that (3.3) gives, in fact, the 
expression for the relaxation tensor Q in terms of the MT of the SSS q. We shall also consider here 
the problem of the possibility of expressing Q directly in terms of r). Since the tensors Q, p and q are 
expressed in terms of each other in an isotropic manner, it follows that they are coaxial (this agrees 
with the experimental fact according to which the principal axes of the stress and strain tensors do 
not vary in the relaxation process). Then 

n1=1 

@WI pba - p,6bad = 0, detll cpa" - %#baII = 0) 
(4.1) 

where pn and (Pi are the eigenvalues of the tensors p and Q, respectively, i.e. are the roots of the 
equations given above in brackets. 

The non-negativity of the quantity q’ under the conditions of the direct dependence of y, on VI, is 
ensured as a result of the inequality 

(Pn - PmY((k7J2 - (kd2) > O (4.2) 

which was obtained [3] as the necessary condition of correctness of the Cauchy problem for the 
system of equations of the theory of elasticity. Here k,’ are the eigenvalues of the tensors Q, i.e. are 
the roots of the equation 

det I] ~"%,b - k,,26ba [I = 0 

From the physical point of view inequality (4.2) is natural, since it means that the force appearing 
during the shearing action is directed against it. 

If no relaxation of the density in the SSS appears in the medium (no pressure relaxation), we can 
use the deviator of any monotonically increasing function f(x) applied to the matrix qucgcd as the 
relaxation tensor Q: 

(4.3) 

The function f of the matrix A is usually understood as f(A) = Hc,A”, where f(x) = Xc,& is any expansion 
of the function f(x) in powers of x. If 
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is the expansion of the matrix qab in the characteristic basis w,, (n is the number of the eigenvector) 

3 

wUnawma = &nn, 2 wUnaW& = 6bQ, wBa = gabwnb 

n=1 

then 
3 

f (‘f%b) = x f 6,‘) wnawnb 

We also have 
3 

f== -$-pb- Pm) (f (h2) - f &naN 
n=r (4.4) 
*=1 

It is clear that the non-negative form of the quantity q’ follows from inequality (4.2), provided 
that f(x) is a monotonically increasing function of its argument. 

Step 1. In particular, we can takef(x) = X/T~ asf(x), in which case 

(4.5) 

Here, as elsewhere, rr is the characteristic relaxation time, which can be a function of the scalar 

parameters of the medium. 

The relaxation equation (X2), (4.5) was given in [3]. To match the formulas derived above with the formulas 
in [3j, we must note that the effective strain tensor g,ij adopted as the basic relaxation variable in [3], can be 
regarded as the expression for the MT of the SSS q in Eulerian space 

&it = Sai~btWt %b = ziazb3g*tf (4.6) 

Then 

dqddt = x,i~jdg*ijfdt + &jxt,j vavi + g*,,Xai~bti 

where we have used the relation dxnildt = V,vi. 

(4.7) 

The equation for g,ij is obtained from (4.7) and (2.2) by multipl~ng by s? over the indices a and b: 

dg,ljfdt + &?,tk vj@ + &?*,kv@ = gdk~lk (4.8) 

After substituting expression (4.5) into relation (4.3) and replacing the variable 7% by the variable T from [3] 
using the formula ‘TV = 1/3~$~g,~, we can confirm that the right-hand side of the first equation of (4.8) as 
identical with the right-hand side of the corresponding equation of f3]. Here we must also take into account the 
fact that the derivatives PE, of the density p = P’fi, (g, = detI]g*ij]] introduced in [3] can be expressed in terms 
of the strain tensor Eij =: E ll gij-g,ij) aS fOllOWS: 

i 
-- 

PIT 

= + g8k[ g&k1 - %kl)= -&'j 

In order to avoid confusion, we also note that the formula for the density p = PO’&,, used in [3,4] is invafid 
within the framework of the present paper and must be replaced by the usual formula 
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Step 2. If we take as f(x) the monotonically increasing function f(x) = - (~*x)-i, then 

‘pba = -%!-l [$“$a - ‘/s~~a&d%il (4.9) 

Step 3. From the general theory of tensor functions it follows that if the tensor cp can be expressed 
in terms of tensor q (when there is no volume relaxation we have cpaa = 0) using relation (4.3), then 
it can always be written as follows: 

where 71 and Q are positive scalar functions of arbitrary scalar arguments. 

Step 4. Irrespective of the fact that any dependence of cp on q satisfying the requirement that q’ be 
non-negative can be written in the form (4.10), we may find that another expression may be more 
suitable when approximating the empirical data. For example, in [4] the relaxation tensor cp was 
considered, expressed in terms of the Hencky strain tensor 

Db = : l/z ln (r)aegcb) = h lnknWnaWnb 
ll=l 

which corresponds to the choice of f(x) = r-‘lnx. We then have 

qba = Z-’ I&,’ - ‘/&,‘DeC] (4.11) 

We can also establish a relation between formulas (4.11) and those in [4] using relations 
(4.6)-(4.8). 

In order to find the volume relaxation in strain terms, we must specify the expression for the trace 
of the tensor cp in terms of invariants of the tensor q. However, the necessary conditions for the 
correctness of the Cauchy problem do not contain the condition for the spherical part of the stress 
tensor analogous to (4.2) for shear stresses, and it becomes difficult to ensure that q’ is 
non-negative. Therefore, it follows that within the framework of the approach adopted here there 
are no general equations containing the general relaxation expressed in deformation terms. 
However, in certain special cases we may find, by virtue of specific features of the functions 
U(gab , qab , S), that some of the expressions paa$bgcb, paagcb qcb or paa Dbb are positive definite. In 
this case we can substitute the corresponding spherical parts into formulas (4.5), (4.9)-(4.11). 

The question of which expression of the tensor cp leads to the simplest approximation of the 
empirical date remains open. 

5. THE RELAXATION EQUATIONS IN AN ANISOTROPIC MEDIUM 

We can take as additional tensor arguments of the functions U(g,, , S) for an anisotropic medium 
in the general state the triplet of vectors una (n is the number of the vector and a is its projection), 
specifying the orientation of selected directions in the medium 

u = U kabr &tar 8) (5.1) 

In the case of anisotropic media with a high degree of symmetry (cubic, hexagonal, etc.) the 
vector triplet a,, is not unique, but it does not matter in what follows. 
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We can ssume, without loss of generality, that the vectors a, are orthonormed in the metric of the 
sss: 

ab _ 
ana%bv - 6 nmr an a = anbqab 

qab = &aabn, anaabn = tiba (5.2) 

Here and henceforth, irrespective of the fact that the index n has no tensor properties, we apply 
to it the rule of summation over repeated upper and lower indices, and juggle them with the help of 
the Kronecker delta 6. The vectors a,, refer to the stress-free state, and their indices are therefore 
juggled with the help of the metric q of the stress-free state. 

In the theory of elasticity of an anisotropic medium the vectors a,, do not depend on time: 
da,,ldt = 0. 

Furthermore, in accordance with the scheme proposed above, in constructing the theory of a 
relaxing anisotropic medium we allow the vectors a,, to vary with time, while the function 

u (gab ) ana ) S) and equations of state (1.3) remain unchanged. Also, the following expression results 
from the requirement that relation (1.6) must be an identity: 

q’ = --dUlda,,da,,ldt (5.3) 

It is natural to denote the quantity p8U/da,, by p 
Using the identity 

2aUid&& + au/a&a%, = o (5.4) 

[which is obtained in the same manner as identity (2.4)], we can find that 

P na = pbaanb (p”” = -pdu/aana) 

In order to avoid any confusion we note that p”’ #pababn , since pub = pcagCb, abn = an’&, and gcbqac + sob. 
Alsopba =pnnanb, butp”b#pnaa,,b. 

We can write, without loss of generality, the relaxation equations of an anisotropic medium, in 
the form 

da,,ldt = (PaPa& (5.5) 

For completeness of the presentation we note the validity of the formulas 

da,“ldt = -(pbaa,b 

d%Jdt = (?a’qbe + ‘?+J%x 

which follow from relations (5.2) and (5.5). 
We will denote the relaxation tensor cp using the same letter as in the isotropic case, since both 

these tensors have much in common. In particular, the spherical part of the tensor cp is responsible, 
as before, for the change in the density of the stress-free state: 

p*dp,-lldt = ‘t2qabdqab/dt = 

= ‘l?.qab [%z%be + (pb%acl = Tao 

Using the identity (5.4), we can rewrite expression (5.3) for 4’ as follows: 

!I’ = p-‘pbaqab (5.6) 

Relation (5.6) has the same form as (2.3), therefore everything that was stated about the tensor in 
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Sets 2 and 3, holds for cp. However, the relation between cp and p does not now have to be isotropic. 
In the linear case it will take the form 

9a 
b _ .b.d 

- ra.e.pd’ (5.7) 

where the tetravalent tensor 7 can naturally be regarded as the tensor of characteristic relaxation 
times (not in a literal sense, since the dimensions of 7 again are not the dimensions of time). 

By virtue of the second law of thermodynamics the tensor 7 must be positive definite, since 

Q’ = P-‘zabcdp 
ab cd 

P 

and symmetrical by virtue of Onsager’s principle 

In the general, non-linear case, the tensor T can be an arbitrary function of any tensor and scalar 
parameters of the medium. 

The analogues of the inequalities (4.2) for the anisotropic case are not known, and we therefore 
cannot express the tensor T directly in terms of q or a,, . 

We can again use the Fourier law of heat conduction (1.5) as the expression for the heat flux 
vector q. 

6. INTERACTION BETWEEN THE THERMAL AND RELAXATION PROCESSES 

We shall now assume that thermodynamic interaction occurs between the relaxation and thermal 
processes. The equations connecting the thermodynamic fluxes and forces must, in this case, ensure 
that the total increase in entropy is positive 

(J = -D-?‘,Tl fl + T-‘pbaqab (6.1) 

Here the quantities q and rp are thermodynamic fluxes and the quantities -T-‘VT and p 
represent the thermodynamic forces. If the relation between them is linear, it can be expressed in 
the form 

where, by virtue of Onsager’s principle, in spite of the symmetrical form of T and x, it is necessary 
that 

a ab. fj ab. 
..c = * .c , 

aabc = aacb 

In the general case, the tensors T, x and cw can be arbitrary functions of the parameters of the 
medium, ensuring that expression (6.1) for the gain in entropy is non-negative. 

7. THE ASYMPTOTIC LYAPUNOV STABILITY OF THE SSS 

In purely relaxation isentropic adiabatic and isothermal processes the asymptotic Lyapunov stability 
of the SSS follows from the fact that the quantity cr is positive. 

Let the external heat source r maintain, in a spatially homogeneous relaxation process in a 
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medium at rest, a constant entropy S(s”, t) = So. Then from the second and third equation of (1.1) 
it follows that r = -p& and 

dUldt = -q’ < 0 

It is clear that the function U decreases monotonically in this process and, acting as the Lyapunov 
function, tends to its minimum, which is realized at a corresponding fixed value of the entropy So of 
the SSS. 

In the adiabatic process (r = 0), the function U = U” = const, and the part of the Lyapunov 
function is played by the entropy (with opposite sign) as the function of gob, qab (a,,) and U” which, 
by virtue of the last equation of (1.1)) also attains its extremum in the SSS, the SSS corresponding to 
the fixed value of the energy U”. 

In the isothermal, homogeneous and purely relaxation process the volume sourre of heat r keeps 
the temperature T = To constant. From relation (1.6) it follows that the part of the Lyapunov 
function is played in this case by the free energy F = U - T’S, whose minimum is also realized in the 
corresponding SSS. 

It is clear that the list of particular processes with an asymptotically stable final state can be 
extended. 

In conclusion we note that linearization of the relations given above leads to the usual Maxwell’s 
theory of relaxation. 
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